CS348n: Neural Representations and Generative Models for 3D Geometry

Learning Gradient Fields for Shape Generation

Ruojin Cai^{*}, Guandao Yang^{*}, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah Snavely, and Bharath Hariharan

Date: 31 January 2022 Presenter: Yikai Li Instructor: Leonidas Guibas

What is this paper trying to achieve?

Given: A dataset of points captured of objects of various classes **Goal:** Create a **generative** model for point clouds that represent these objects

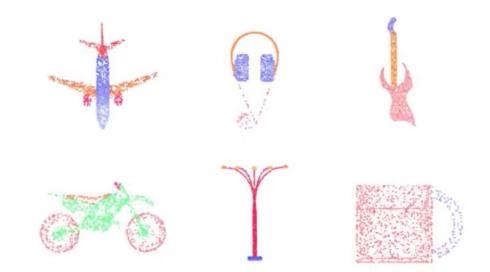
Motivation

Point clouds are only **part** of the picture

- Samples of physical objects
- Want to build a model from samples

Why is a model useful?

- Densify sparse data (LiDAR)
- Object completion (Occlusion)
- Determine other properties



Prior Works

Point Cloud Modelling

- AtlasNet
- PointFlow
- PointGrow
- Point Cloud GAN
- Achlioptas et al

- + No post-processing required
- + Computationally efficient
- Fixed point cloud size
- Heuristic distance functions
- Assumed ordering
- Unstable Training

3D Representations

Voxels

- Wu et al
- Girdhar et al

Meshes

- Scape
- Dyna

Implicit Representation

- DeepSDF
- OccupancyNet
- + Model 3D distribution directly
- Require Signed Distance Function GT
- Computationally Expensive

Energy-Based Modelling

- Score Matching
- Denoising Score Matching
- Sliced Score Matching
- Song et al

This paper builds on this approach

+ No need to normalize probability+ Computationally Efficient

Contributions

- Novel generative model of objects given their point clouds
- Useful because of robustness to sparsity and occlusion
- Prior works are computationally expensive and unstable
- Key insights
 - Can generate implicit surfaces without generating meshes
 - Can generate new objects by interpolating latent space
- State of the art performance on auto-encoding and generation of point clouds

Problem Setting

Set of Shapes $\mathcal{X} = \{X^{(i)}\}_{i=1}^N$

Set of Points for a shape $X^{(i)} =$

$$X^{(i)} = \{x_j^i\}_{j=1}^{M_i}$$

S

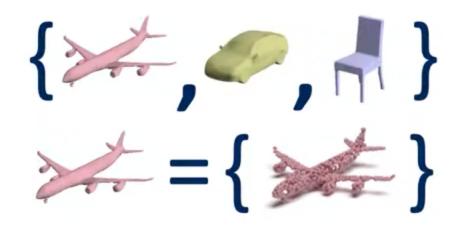
Surface

Uniform Distribution on Surface

$$P_S(x)$$

Gaussian Kernel Approximation

$$Q_{\sigma,S}(x) = \int_{\mathbf{s}\in\mathbb{R}^3} P_S(s)\mathcal{N}(x;s,\sigma^2 I)$$



Problem Setting

Idea: Model the probability of the surface: $Q_{\sigma,S}(x)$

- Approach of prior works (Implicit Representation)
- Computational limitations of this approach

Alternative Idea: Model the gradient of the log-probability: $\nabla_x \log Q_{\sigma,S}(x)$

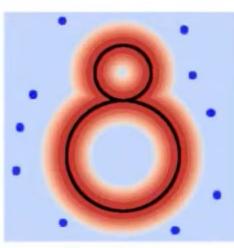
- Start with a general prior distribution (e.g. Gaussian Noise)
- Iteratively move points in direction of steepest ascent
- Can arbitrarily set the number of sampled points
- Can prove direction of gradient is to closest point on surface

Neural Network: $g_{\theta}(x, \sigma) \cong \nabla_x \log Q_{\sigma,S}(x)$

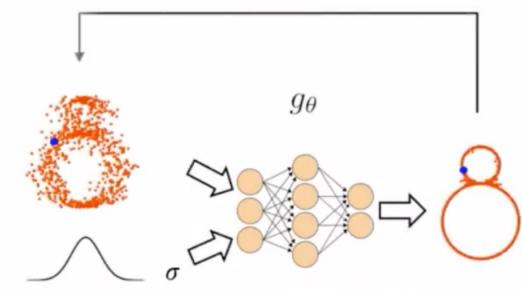
Method

Point Cloud Sampling

- Start with a random distribution go in direction of gradient
- Add random noise (Annealed Langevin Dynamics)
- 10 Iterations going from 1 to 0.01 of Gaussian noise



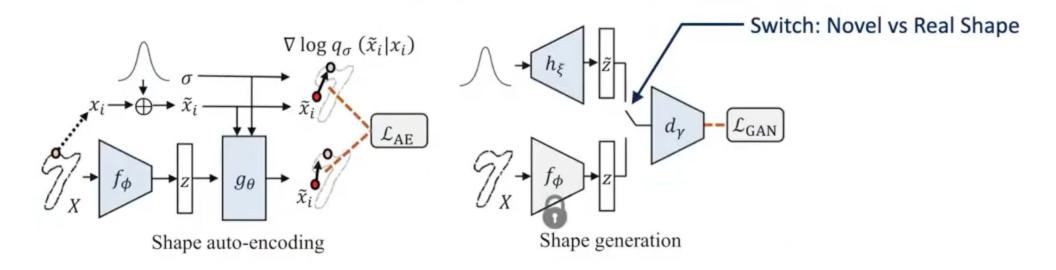
Probability



Method

Generating Multiple Shapes

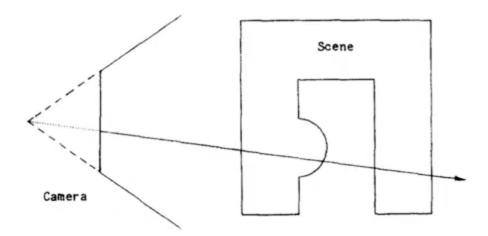
- ${\ensuremath{\, \bullet }}$ Auto-encoder encodes input to latent variable Z
- Train using a Generative Adversarial Network (GAN)
- ${\, \bullet \,}$ Generate realistic novel shapes using GAN latent variable Z



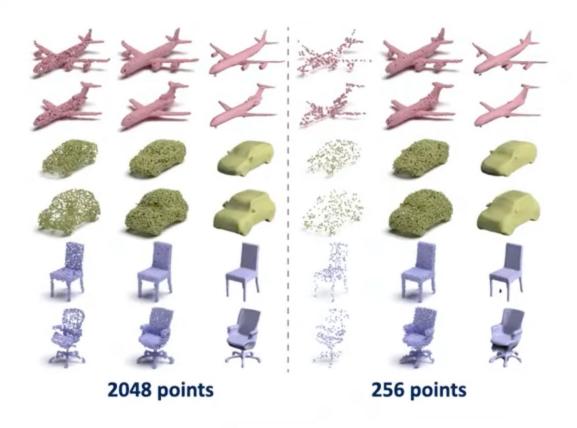
Method

Implicit Surface Generation

- Key insight: Surface is the region of max likelihood
- Zero Gradient condition on surface
- For small variance, approximates distance field around surface



Qualitative Results



ShapeNet Auto-Encoding

Dataset	Metric	l-GAN [1]		AtlasNet [23]		PF [60]	Ours	Oracle
		CD	EMD	Sphere	Patches			
MNIST-CP	CD	8.204	-	7.274	4.926	17.894	2.669	1.012
	EMD	40.610	-	19.920	15.970	8.705	7.341	4.875
Airplane	CD	1.020	1.196	1.002	0.969	1.208	0.96	0.837
	EMD	4.089	2.577	2.672	2.612	2.757	2.562	2.062
Chair	CD	9.279	11.21	6.564	6.693	10.120	5.599	3.201
	EMD	8.235	6.053	5.790	5.509	6.434	4.917	3.297
Car	CD	5.802	6.486	5.392	5.441	6.531	5.328	3.904
	EMD	5.790	4.780	4.587	4.570	5.138	4.409	3.251
ShapeNet	CD	7.120	8.850	5.301	5.121	7.551	5.154	3.031
	EMD	7.950	5.260	5.553	5.493	5.176	4.603	3.103

Takeaways

- Best performance in almost all cases
- Operates at theoretical optimum

Point Cloud Upsampling

	N	CD					EMD				
		2048	1024	512	256	128	2048	1024	512	256	128
	10K	0.993	1.057	0.999	1.136	1.688	2.463	2.608	2.589	3.042	3.715
-	3K	1.080	1.059	1.003	1.142	1.753	2.533	2.586	2.557	2.997	3.878
	1K	-	-	1.021	1.149	1.691	-	-	2.565	2.943	3.633

Runtime points

Takeaways

- Able to operate on extremely sparse data
- Able to train using sparse data without loosing too much performance

Generation Results

Discussion of results

- Performance suggests accurate & uniform distribution
 - Qualitatively & Quantitatively
 - Close to best possible performance
- Robust to sparsity in training and runtime
- Outperforms AtlasNet on ShapeNet data (close to optimal)
- Shape Generation results look believable
 - Comparable results to PointFlow but half the training time

Critique / Limitations / Open Issues

- No runtime analysis
- Rotation and Translation invariance?
- How does this work in a real scene?
- How does it deal with noise?
- How robust is it to real data?
- "Limited to reconstruction of single objects" [2]
- "struggle to generalize to scenes outside of the training distribution" [2]

Contributions (Recap)

- Novel generative model of objects given their point clouds
- Useful because of robustness to sparsity and occlusion
- Prior works are computationally expensive and unstable
- Key insights
 - Can generate implicit surfaces without generating meshes
 - Can generate new objects by interpolating latent space
- State of the art performance on auto-encoding and generation of point clouds